If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+5=4x+7
We move all terms to the left:
x^2+5-(4x+7)=0
We get rid of parentheses
x^2-4x-7+5=0
We add all the numbers together, and all the variables
x^2-4x-2=0
a = 1; b = -4; c = -2;
Δ = b2-4ac
Δ = -42-4·1·(-2)
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{6}}{2*1}=\frac{4-2\sqrt{6}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{6}}{2*1}=\frac{4+2\sqrt{6}}{2} $
| 5w+15=0 | | 4+29=x+7 | | x+(x+10)+(2x-10)=180 | | 2(v+2)=-5v | | 4-t/1.5=-6.06 | | 26‐45=9s | | -16p=-15p-20 | | 3x²-4x-7=0 | | 10−6b=-7b | | x+0.15x=925 | | -5+9b+2=-16+8b | | 2|x-5|-13=-5 | | 19(9x−6x−122)−(x+1)=0 | | |-9+x|/5=4 | | 19⋅(9x−6x−122)−(x+1)=0 | | -8-3g=-4g-3 | | w-2=2w | | 12x+12=13-12 | | -8y+2(y-8)=8 | | -11+10u=6u-10 | | (X+7)(4x+3)=180 | | (4x-33)=77 | | 1x-2+2.25=13.50 | | 12f=17f-10 | | -19.9d+19.5=-7.3d-17.42-15.2d | | 4-(5x+3)+(6x+3)/3=38 | | x^2+1=2.2625 | | -6+n/2=-5 | | 7j+20=20+19j+15j | | 4-4(x+5)+5x=3+6 | | 1/2(4x-10)=1/5(25x-10) | | x^2+1=18.125 |